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Parallel I/O Performance: From 
Events to Ensembles 



•  Explosion of sensor & simulation data make I/O a 
critical component 
•  Petascale I/O requires new techniques: analysis, 
visualization, diagnosis 
•  Statistical methods can be revealing  
•  Present case studies and optimization results 
for: 

•  MADbench – A cosmology application 
•  GCRM – A climate simulation  

Parallel I/O Evaluation 
 and Analysis  
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IPM‐I/O is an interposi2on library that wraps I/O 
calls with tracing instruc2ons 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Events to Ensembles 
The details of a trace can obscure as much as they reveal 

And it does not scale 

Task 0 

Task 
10,000 Wall clock time  

Statistical methods reveal what the trace obscures 
And it does scale 
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Case Study #1: 

• MADCAP analyzes the Cosmic 
Microwave Background radiation.  

• Madbench – An out-of-core matrix 
solver writes and reads all of memory 
multiple times. 



CMB Data Analysis 
time domain - O(1012) 

pixel sky map - O(108) 

angular power spectrum - O(104) 



 MADCAP is the maximum likelihood CMB 
angular power spectrum estimation code 

 MADbench is a lightweight version of 
MADCAP 

 Out-of-core calculation due to large size and 
number of pix-pix matrices 

MADbench Overview 



Computational Structure 
I. Compute, Write  

(Loop) 
III. Read, Compute, 
Write (Loop) 

IV. Read, Compute/
Communicate (Loop) 

II. Compute/Communicate  
(no I/O) 

The compute intensity 
can be tuned down to 
emphasize I/O 
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MADbench I/O Optimization 

wall clock time  
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Phase II. Read # 4 5 6 7 8 
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MADbench I/O Optimization 
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approach 
revealed a 
systematic 
pattern 
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Case Study #2: 

• Global Cloud Resolving Model 
(GCRM) developed by scientists at 
CSU  

• Runs resolutions fine enough to 
simulate cloud formulation and 
dynamics 

• Mark Howison’s analysis fixed it 



GCRM I/O Optimization 

Wall clock time  

Task 0 

Task 
10,000 

At 4km 
resolution 
GCRM is 
dealing with 
a lot of data. 
The goal is 
to work at 
1km and 40k 
tasks, which 
will require 
16x as much 
data. desired 

checkpoint time 
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GCRM I/O Optimization 

Worst case 
20 sec 

Insight: all 
10,000 are 
happening 
at once 
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GCRM I/O Optimization 

Worst case 
3 sec 

Collective 
buffering 
reduces 
concurrency 



GCRM I/O Optimization 
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GCRM I/O Optimization 

Still need 
better 
worst case 
behavior 

Insight: 
Aligned 
I/O 

Worst case 
1 sec 
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GCRM I/O Optimization 
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GCRM I/O Optimization 

Sometimes 
the trace 
view is the 
right way to 
look at it 

Metadata is 
being 
serialized 
through task 0 
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GCRM I/O Optimization 

Defer 
metadata 
ops so there 
are fewer 
and they are 
larger 



GCRM I/O Optimization 
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Conclusions and Future Work 

•  Traces do not scale, can obscure 
underlying features 

•  Statistical methods scale, give useful 
diagnostic insights into large datasets 

•  Future work: gather statistical info 
directly in IPM 

•  Future work: Automatic recognition of 
model and moments within IPM 
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